Рис. 1.69.
Представленная схема называется однополупериодным выпрямителем, так как она использует только половину входного сигнала (половину периода).
На рис. 1.70 представлена схема двухполупериодного выпрямителя, а на рис. 1.71 показан ее выходной сигнал.
Рис. 1.70. Двухполупериодный мостовой выпрямитель.
Рис. 1.71.
Из графика видно, что входной сигнал используется при выпрямлении полностью. На графике выходного напряжения наблюдаются интервалы с нулевым значением напряжения, они обусловлены прямым напряжением диодов. В рассматриваемой схеме два диода всегда подключены последовательно к входу; об этом следует помнить при разработке низковольтных источников питания.
1.27. Фильтрация в источниках питанияВыпрямленные сигналы, полученные в предыдущем разделе, еще не могут быть использованы как сигналы постоянного тока. Дело в том, что их можно считать сигналами постоянного тока только в том отношении, что они не изменяют свою полярность. На самом деле в них присутствует большое количество «пульсаций» (периодических колебаний напряжения относительно постоянного значения), которые необходимо сгладить для того, чтобы получить настоящее напряжение постоянного тока. Для этого схему выпрямителя нужно дополнить фильтром низких частот (рис. 1.72).
Рис. 1.72.
Вообще говоря, последовательный резистор здесь не нужен, и его, как правило, не включают в схему (если же резистор присутствует, то он имеет очень маленькое сопротивление и служит для ограничения пикового тока выпрямителя). Дело в том, что диоды предотвращают протекание тока разряда конденсаторов, и последние служат скорее как накопители энергии, а не как элементы классического фильтра низких частот. Энергия, накопленная конденсатором, определяется выражением W = 1/2CU2. Если емкость С измеряется в фарадах, а напряжение U — в вольтах, то энергия W будет измеряться в джоулях (в ваттах в 1 с).
Конденсатор подбирают так, чтобы выполнялось условие RнC >> 1/f (где f — частота пульсаций, в нашем случае 120 Гц). При этом происходит ослабление пульсаций за счет того, что постоянная времени для разрядки конденсатора существенно превышает время между перезагрузками. В следующем разделе мы поясним это утверждение.
Определение напряжения пульсаций. Приблизительно определить напряжение пульсаций нетрудно, особенно если оно невелико по сравнению с напряжением постоянного тока (рис. 1.73).
Рис. 1.73. Определение напряжения пульсаций источника.
Нагрузка вызывает разряд конденсатора, который происходит в промежутке между циклами (или половинами циклов для двухполупериодного выпрямления) выходного сигнала. Если предположить, что ток через нагрузку остается постоянным (это справедливо для небольших пульсаций), то ΔU = (I/C)Δt (напомним, что I = C(dU/dt). Подставим значение 1/f (или 1/2f для двухполупериодного выпрямления) вместо Δt (такая замена допустима, так как конденсатор начинает снова заряжаться меньше, чем через половину цикла). Получим
ΔU = Iнагр/fC
(однополупериодное выпрямление),
ΔU = Iнагр/2fC
(двухполупериодное выпрямление).
(Наш преподавательский опыт говорит о том, что студенты любят заучивать эти уравнения! Неофициальный опрос, проведенный авторами, показал, что из каждых двух опрошенных инженеров два не помнят эти уравнения. Так что не трудитесь напрасно над бесполезным заучиванием, а лучше научитесь выводить эти зависимости.)
Если воспользоваться экспоненциальной функцией, определяющей изменение напряжения на конденсаторе при его разряде, то результат получим неправильным по следующим причинам:
1. Разряд конденсатора описывается экспоненциальной зависимостью только в том случае, если нагрузка резистивна; в большинстве случаев это не так. Часто на выходе выпрямителя устанавливают стабилизатор напряжения, который обеспечивает постоянство выпрямленного напряжения — он выступает в роли нагрузки, через которую протекает постоянный ток.
2. Для источников питания используют, как правило, конденсаторы с точностью 20 % и более. При разработке схем следует учитывать разброс параметров компонентов и для страховки производить расчет для наиболее неблагоприятного сочетания их значений. В таком случае, если считать, что в начальный момент разряд конденсаторов происходит по линейному закону, приближение будет весьма точным, особенно если пульсации невелики. Неточности приближения приводят лишь к некоторой перестраховке — они проявляются в завышении расчетного напряжения пульсаций по сравнению с его истинным значением.
Упражнение 1.27. Разработайте схему двухполупериодного выпрямителя, обеспечивающего на выходе напряжение постоянного тока с амплитудой 10 В. Напряжение пульсаций не должно превышать 0,1 В (двойной амплитуды). Ток в нагрузке составляет 10 мА. Выберите соответствующее входное напряжение переменного тока, учитывая, что падение напряжения на диоде составляет 0,6 В. При расчете правильно задайте частоту пульсаций.
1.28. Схемы выпрямителей для источников питанияДвухполупериодная мостовая схема. На рис. 1.74 показана схема источника питания постоянного тока с мостовым выпрямителем, который мы только что рассмотрели.
Рис. 1.74. Схема мостового выпрямителя. Значок полярности и электрод в виде дуги служат для обозначения поляризованного конденсатора, заряжать его с другой полярностью недопустимо.
Промышленность изготавливает мостовые схемы в виде функциональных модулей. Маленькие мостовые модули рассчитаны на предельный ток 1 А и напряжение пробоя от 100 до 600 В, а иногда до 1000 В. Для больших мостовых выпрямителей предельный ток равен 25 А и выше. В табл. 6.4 приведены параметры нескольких типов таких модулей.
Двухполупериодный однофазный выпрямитель. Схема двухполупериодного однофазного выпрямителя приведена на рис. 1.75.
Рис. 1.75. Двухполупериодный выпрямитель на основе трансформатора со средней точкой.
Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. В связи с этим ток в обмотке за этот интервал времени в 2 раза больше, чем в простой двухполупериодной схеме. Согласно закону Ома, температура нагрева обмотки пропорциональна произведению I2R, значит, за время в 2 раза меньшее нагрев будет в 4 раза больше или в среднем больше по сравнению с эквивалентной двухполупериодной схемой.
Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,4 (в √2) раз больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.
Упражнение 1.28. Это упражнение поможет вам разобраться в механизме нагрева обмотки, пропорционального I2R, и понять, в чем проявляется недостаток однофазного выпрямителя. На какое предельное минимальное значение тока должен быть расчитан плавкий предохранитель, чтобы в цепи мог протекать ток, изменяющийся согласно графику, показанному на рис. 1.76, и имеющий среднюю амплитуду 1 А?
Подсказка: предохранитель «перегорает», когда в цепи начинает протекать ток, превышающий предельное значение тока предохранителя. При этом в предохранителе расплавляется металлический проводник (температура его нагрева пропорциональна I2R).
Допустим, что и в нашем случае температурная постоянная времени для плавкого предохранителя значительно больше, чем период прямоугольных колебаний, т. е. предохранитель реагирует на значение I2, осредненное за несколько периодов входного сигнала.
Рис. 1.76.
Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рис. 1.77. Она позволяет расщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности).